§7-1电容元件.ppt

上传人:ga****84 文档编号:491900 上传时间:2018-10-14 格式:PPT 页数:30 大小:560KB
下载 相关 举报
§7-1电容元件.ppt_第1页
第1页 / 共30页
§7-1电容元件.ppt_第2页
第2页 / 共30页
§7-1电容元件.ppt_第3页
第3页 / 共30页
§7-1电容元件.ppt_第4页
第4页 / 共30页
§7-1电容元件.ppt_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、第七章 电容元件和电感元件,前几章讨论了电阻电路,即由独立电源和电阻、受控源、理想变压器等电阻元件构成的电路。描述这类电路电压电流约束关系的电路方程是代数方程。但在实际电路的分析中,往往还需要采用电容元件和电感元件去建立电路模型。这些元件的电压电流关系涉及到电压电流对时间的微分或积分,称为动态元件。含动态元件的电路称为动态电路,描述动态电路的方程是微分方程。本章先介绍两种储能元件电容元件和电感元件。再介绍简单动态电路微分方程的建立。以后两章讨论一阶电路和二阶电路的时域分析,最后一章讨论线性时不变动态电路的频域分析。,常用的几种电容器,71 电容元件,一、 电容元件 集总参数电路中与电场有关的物

2、理过程集中在电容元件中进行,电容元件是构成各种电容器的电路模型所必需的一种理想电路元件。 电容元件的定义是:如果一个二端元件在任一时刻,其电荷与电压之间的关系由u-q平面上一条曲线所确定,则称此二端元件为电容元件。,图7-1,(a) 电容元件的符号 (c) 线性时不变电容元件的符号 (b) 电容元件的特性曲线 (d) 线性时不变电容元件的特性曲线,电容元件的符号和特性曲线如图7-1(a)和(b)所示。,其特性曲线是通过坐标原点一条直线的电容元件称为线性电容元件,否则称为非线性电容元件。,图7-1,线性时不变电容元件的符号与特性曲线如图(c)和(d)所示,它的特性曲线是一条通过原点不随时间变化的

3、直线,其数学表达式为,式中的系数C为常量,与直线的斜率成正比,称为电容,单位是法拉,用F表示。,图7-1,实际电路中使用的电容器类型很多,电容的范围变化很大,大多数电容器漏电很小,在工作电压低的情况下,可以用一个电容作为它的电路模型。当其漏电不能忽略时,则需要用一个电阻与电容的并联作为它的电路模型。 在工作频率很高的情况下,还需要增加一个电感来构成电容器的电路模型,如图7-2所示。,图7-2 电容器的几种电路模型,二、电容元件的电压电流关系 对于线性时不变电容元件来说,在采用电压电流关联参考方向的情况下,可以得到以下关系式,此式表明电容中的电流与其电压对时间的变化率成正比,它与电阻元件的电压电

4、流之间存在确定的约束关系不同,电容电流与此时刻电压的数值之间并没有确定的约束关系。 在直流电源激励的电路模型中,当各电压电流均不随时间变化的情况下,电容元件相当于一个开路(i=0)。,在已知电容电压u(t)的条件下,用式(6-2)容易求出其电流i(t)。例如已知C=1F电容上的电压为u(t)=10sin(5t)V,其波形如图7-3(a)所示,与电压参考方向关联的电容电流为,图7-3,例7-1 已知C=0.5F电容上的电压波形如图7-4(a)所示, 试求电压电流采用关联参考方向时的电流iC(t),并画 出波形图。,图74 例71,2.当1st3s时,uC(t)=4-2t,根据式72可以得到,1.

5、当0t1s 时,uC(t)=2t,根据式72可以得到,解:根据图74(a)波形,按照时间分段来进行计算,图74 例71,3.当3st5s时,uC(t)=-8+2t,根据式72可以得到,4.当5st时,uC(t)=12-2t,根据式72可以得到,图74 例71,根据以上计算结果,画出图74(b)所示的矩形波形。,在已知电容电流iC(t)的条件下,其电压uC(t)为,其中,称为电容电压的初始值,它是从t=-到t=0时间范围内流过电容的电流在电容上积累电荷所产生的电压。,式(73)表示t0某时刻电容电压uc(t)等于电容电压的初始值uc(0)加上t=0到t时刻范围内电容电流在电容上积累电荷所产生电压

6、之和,就端口特性而言,等效为一个直流电压源uc(0)和一个初始电压为零的电容的串联 如图75所示。,图75,从上式可以看出电容具有两个基本的性质 (1)电容电压的记忆性。 从式(73)可见,任意时刻T电容电压的数值uC(T),要由从-到时刻T之间的全部电流iC(t)来确定。也就是说,此时刻以前流过电容的任何电流对时刻T 的电压都有一定的贡献。这与电阻元件的电压或电流仅仅取决于此时刻的电流或电压完全不同,我们说电容是一种记忆元件。,例72 电路如图76(a)所示,已知电容电流波形如图76(b)所示,试求电容电压uC(t),并画波形图。,图7-6,解:根据图(b)波形的情况,按照时间分段来进行计算

7、 1当t0时,iC(t)=0,根据式7-3可以得到,2当0t1s时,iC(t)=1A,根据式7-3可以得到,图7-6,3当1st3s时,iC(t)=0,根据式73可以得到,4当3st5s时,iC(t)=1A,根据式73可以得到,5当5st时,iC(t)=0,根据式73可以得到,根据以上计算结果,可以画出电容电压的波形如图(c)所示,由此可见任意时刻电容电压的数值与此时刻以前的全部电容电流均有关系。 例如,当1st3s时,电容电流iC(t)=0,但是电容电压并不等于零,电容上的2V电压是0t1s时间内电流作用的结果。,图7-6,图77(a)所示的峰值检波器电路,就是利用电容的记忆性,使输出电压波

8、形如图(b)中实线所示保持输入电压uin(t)波形如图(b)中虚线所示中的峰值。,图77 峰值检波器电路的输入输出波形,(2)电容电压的连续性 从例72的计算结果可以看出,电容电流的波形是不连续的矩形波,而电容电压的波形是连续的。从这个平滑的电容电压波形可以看出电容电压是连续的一般性质。即电容电流在闭区间t1,t2有界时,电容电压在开区间(t1,t2)内是连续的。这可以从电容电压、电流的积分关系式中得到证明。 将t=T和t=T+dt代入式(63)中,其中t1Tt2和t1T+dt0时,W(t)不可能为负值,电容不可能放出多于它储存的能量,这说明电容是一种储能元件。由于电容电压确定了电容的储能状态

9、,称电容电压为状态变量。 从式(75)也可以理解为什么电容电压不能轻易跃变,这是因为电容电压的跃变要伴随电容储存能量的跃变,在电流有界的情况下,是不可能造成电场能量发生跃变和电容电压发生跃变的。,若电容的初始储能为零,即u(t0)=0,则任意时刻储存在电容中的能量为,此式说明某时刻电容的储能取决于该时刻电容的电压值,与电容的电流值无关。 电容电压的绝对值增大时,电容储能增加;电容电压的绝对值减小时,电容储能减少。,1. 两个线性电容并联单口网络,就其端口特性而言,等效于一个线性电容,其等效电容的计算公式推导如下:,四、电容的串联和并联,图710,列出图710(a) 的KCL方程,代入电容的电压电流关系,得到端口的电压电流关系,其中,2. 两个线性电容串联单口网络,就其端口特性而言,等效于一个线性电容,其等效电容的计算公式推导如下:,列出图711(a) 的KVL方程,代入电容的电压电流关系,得到端口的电压电流关系,图711,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。