第十八章 动态优化模型动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。1 变分法简介变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。1.1 变分法的基本概念1.1.1 泛函设为一函数集合,若对于每一个函数有一个实数与之对应,则称是对应在上的泛函,记作。称为的容许函数集。通俗地说,泛函就是“函数的函数”。例如对于平面上过定点和的每一条光滑曲线,绕轴旋转得一旋转体,旋转体的侧面积是曲线的泛函。由微积分知识不难写出 (1)容许函数集可表示为 (2)最简单的一类泛函表为 (3)被积函数包含自变量,未知函数及导数。(1)式是最简泛
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。