.1.已知函数.()若,求的取值范围;()证明:2.设为实数,函数。()求的单调区间与极值;()求证:当且时,。1.已知函数.()若,求的取值范围;()证明:先看第一问,首先由可知函数的定义域为,易得则由可知,化简得,这时要观察一下这个不等式,显然每一项都有因子,而又大于零,所以两边同乘可得,所以有,在对求导有,即当时,0,在区间上为增函数;当时,;当时,0,在区间上为减函数。所以在时有最大值,即。又因为,所以。应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。要证,只须证当时,;当时,即可。由上知,但用去分析的单调性受阻。我们可以尝试再对
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。