.点的运动轨迹符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹 “动点路径”是一个比较抽象的问题,但在高中解析几何中的学习是非常有用的,也是非常重要的。在研究动点问题时,可以在运动中寻找不变的量,即不变的数量关系或位置关系如果动点的轨迹是一条线段,那么其中不变的量便是该动点到某条直线的距离始终保持不变;如果动点的轨迹是一段圆弧,那么其中不变的量便是该动点到某个定点的距离始终保持不变因此,解决此类动点轨迹问题便可转化为寻找变量与不变的关系。常用的基本轨迹:1、如图,已知AB=10,P是线段AB上的动点,分别以AP、PB为边在线段AB的同侧作等边ACP和PDB,连接CD,设CD的中点为G,当点P从点A运动到点B时,则点G移动路径的长是_变式1、(2010桂林)如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边AEP和等边PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是_