.对勾函数的性质及应用一、 对勾函数的图像与性质:1. 定义域: 2. 值域:3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即4. 图像在一、三象限, 当时,(当且仅当取等号),即在x=时,取最小值 由奇函数性质知:当x0时,在x=时,取最大值5. 单调性:增区间为(),(),减区间是(0,),(,0)二、 对勾函数的变形形式类型一:函数的图像与性质1.定义域: 2.值域:3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.4.图像在二、四象限, 当x0时,在x=时,取最小值;当时,在x=时,取最大值5. 单调性:增区间为(0,),(,0)减区间是(),(),类型二:斜勾函数作图如下1.定义域: 2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:增区间为(-,0),(0,+).作图如下:1.定义域: 2.值域:R3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值.5.单