. 1、列二元一次方程组解决实际问题的一般步骤对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程来解容易得多。列方程组解应用题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得的未知数的值是否符合题意,符合题意即为应用题的解。 2、列二元一次方程组解决实际问题的常用方法(1)数量较多的问题常用列表的方式分析数量关系,因为利用表格可清楚地反映数量之间的关系,从而达到少设未知数,减少计算量的目的。解应用题时,有这样一种规律:如果少设未知数,那么思路复杂,计算简单;如果多设未知数,那么思路简单,计算复杂。我们应根据具体的题目选择所设未知数的个数。(2)借助“线段图”分析复杂的行程问题,列二元一次方程组解行程问题的常见类型有两种,一是速度已知,这种类型的特征是速度已知,时间和路程以相等关系的形式给出,我们可以根据时间关系或路程关系来列出二元一次方程组;二是时间已知,路程和速度以相等关系的形式给出,这时我们可以根据路程和速度列出二元一次方程组。