.2015届高三数学思想方法专题一:数形结合 班级: 姓名:数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要数学思想方法.利用数形结合思想,“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从而找到解题思路,使问题得到解决.以形助数常用的有:借助于数轴、函数图像、单位圆、数式的结构特征、解析几何方法,以数解形常用的有:借助于几何轨迹所遵循的数量关系、运算结果与几何定理的结合.【以形助数】例1、(集合中的数形结合)已知集合,当,求实数的取值范围.参考解答:画数轴分析可得.例2、(函数中的数形结合)设,当时,恒成立,求的取值范围。参考解答:解法一:由,在上恒成立在上恒成立.考查函数的图像在时位于轴上方,如下图不等式的成立条件是:1);2);综上所述解法二:由,令,在同一坐标系中作出两个函数的图像(如右图)满足条件的直线位于之间,而直线对应的的值分别为,故直线对应的.例3
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。