.数形结合实现数形结合,常与以下内容有关:实数与数轴上的点的对应关系;函数与图象的对应关系;曲线与方程的对应关系;以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;所给的等式或代数式的结构含有明显的几何意义。一、联想图形的交点例1. A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B)。例2. 练习:设定义域为函数,则关于的方程有7个不同实数解的充要条件是( ) 答案C二、联想绝对值的几何意义例1、已知,设:函数在上单调递减,:不等式的解集为,如果与有且仅有一个正确,试求的范围。因为不等式的几何意义为:在数轴上求一点,使到的距离之和的最小值大于1,而到二点的最短距离为,即而:函数在上单调递减,即由题意可得:三、联想二次函数例1、已知关于的方程有四个不相等的实根,则实数的取值范围为 分析:直接求解,繁难!。由方程联想二次函数进行数形结合,以数助形,则简洁明
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。