.函数的基本性质复习教学目标:函数的三个基本性质:单调性,奇偶性,周期性教学过程一、单调性1定义:对于函数,对于定义域内的自变量的任意两个值,当时,都有,那么就说函数在这个区间上是增(或减)函数。2证明方法和步骤:(1) 设元:设是给定区间上任意两个值,且;(2) 作差:;(3) 变形:(如因式分解、配方等);(4) 定号:即;(5) 根据定义下结论。3二次函数的单调性:对函数,当时函数在对称轴的左侧单调减小,右侧单调增加;当时函数在对称轴的左侧单调增加,右侧单调减小;例:讨论函数在(-2,2)内的单调性。4复合函数的单调性:复合函数在区间具有单调性的规律见下表:增 减 增 减 增 减 增 减 减 增 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。例:函数的单调减区间是 ( )A. B. C. D.5函数的单调性
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。