.三角函数式的化简 要求是:项数最少三角函数种类最少函数次数最低尽可能不带根号 能求值得要求出值. 一: 定义法例1. 化简 解: 设点 二: 弦切互化法 例2. 解: 原式 三: 变用公式 例3. 解: 原式 说明: 公式在解题中运用非常灵活.常常变形为 来使用.四: 连锁反应法 例5. 解: 原式=说明: 此题分子分母同乘以,从而连续逆用倍角公式,达到多次化角的目地.五: 升降次法 例6. 解: 原式 例7. 解: 原式 六: 基本技巧 例8 (1) 解: 原式 (2) 解: 角的变换角的变换,一般包括角的分解和角的组合,角的分解即把一个角分成几个角的和或差,而角的组合即把几个角通过和或差组合成一个角。例1、已知
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。