.数学建模实验报告-流水问题一 问题描述 三个横截面积为常数A,高分别为H1,H2,H3的水池内都盛满了水,都由池底一横截面积为B的小孔放水。设水从小孔流出的速度为v(i)=sqrt(2*g*h(i),求水流空所需的时间。二 前提假设1. 假设在一段极微小的时间间隔dt内,三个浴缸的高度变化速率以及三个排水口的排水速率是一个不变化的定值。 2. 排水速率仅与水池高度有关。3. 排水口的高度为水池最低处,即不会出现因水位低于排水口而无法排完水的现象。三 问题分析 将此问题抽象成数学问题:求初值分别为H1,H2,H3的函数h1,h2,h3随时间变化的函数,以及他们变为0所需的时间(设水池1,2,3的流出速度为v1,v2,v3)。根据任何一个水池内水量在一个时间微元内的减少量等于流出量减去流入量可以得到如下关系:浴缸 1:。水池2:。两边取极限后得-dh2*A= ds2*B- dh1*A。注意到|dh1*A|= |ds1*B|,除以dt可得(-dh2/
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。