.3.4 RSA参数的选择RSA遭受攻击的很多情况是因为算法实现的一些细节上的漏洞所导致的,所以在使用RSA算法构造密码系统时,为保证安全,在生成大素数的基础上,还必须认真仔细选择参数,防止漏洞的形成。根据RSA加解密过程,其主要参数有三个:模数N,加密密钥e,解密密钥d。3.4.1 模数N的确定虽然迄今人们无法证明,破解RSA系统等于对N因子分解,但一般相信RSA系统的安全性等同于因子分解,即:若能分解因子N,即能攻破RSA系统,若能攻破RSA系统,即能分解因子。因此,在使用RSA系统时,对于模数N的选择非常重要。在RSA算法中,通过产生的两个大素数p和q相乘得到模数N,而后分别通过对它们的数学运算得到密钥对。由此,分解模数N得到p和q是最显然的攻击方法,当然也是最困难的方法,如果模数N被分解,攻击者利用得到的P和q便可计算出,进而通过公开密钥e由解密密钥d,则RSA体制立刻被攻破。相当一部分的对RSA的攻击就是试图分解模数N,选择合适的是实现RSA算法并防止漏洞的重要环节。一般地,模数N的确定可以遵循以下几个原则:p和q之差要大。当p和q相差很小时,在