.1步骤第一数学归纳法一般地,证明一个与自然数n有关的命题P(n),有如下步骤:(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;(2)假设当n=k(kn0,k为自然数)时命题成立,证明当n=k+1时命题也成立。综合(1)(2),对一切自然数n(n0),命题P(n)都成立。第二数学归纳法对于某个与自然数有关的命题P(n),(1)验证n=n0,n=n1时P(n)成立;(2)假设nk时命题成立,并在此基础上,推出n=k+1命题也成立。综合(1)(2),对一切自然数n(n0),命题P(n)都成立。倒推归纳法又名反向归纳法(1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2k,k1);(2)假设P(k+1)(kn0)成立,并在此基础上,推出P(k)成立,综合(1)(2),对一切自然数n(n0),命题P(n)都成立;螺旋式归纳法对两个与自然数有关的命题P(n),Q(n),(1)验证n=n0时P(n)