.数学归纳法例题例请读者分析下面的证法:证明:n=1时,左边,右边,左边=右边,等式成立假设n=k时,等式成立,即:那么当n=k+1时,有:这就是说,当n=k+1时,等式亦成立由、可知,对一切自然数n等式成立评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k这一步,当n=k+1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求正确方法是:当n=k+1时这就说明,当n=k+1时,等式亦成立,例2是否存在一个等差数列an,使得对任何自然数n,等式:a1+2a2+3a3+nan=n(n+1)(n+2)都成立,并证明你的结论分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来an,然后再证明一般性解:将n=1,2,3分别代入等式得方程组,解得a1=6,a2=9,a3=12,则d=3故存在一个等差数列an=3n+3,当n=1,2,3时,已知等式成立下面用数学归纳法证明
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。