.论述数学中体现的数学思想与方法 所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识,它是数学学习的精髓。掌握数学思想方法是提高学生数学素质的必要条件。下面是总结了几种重要的初中数学思想。 一、常用的数学思想(数学中的四大思想) 1.函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。 深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:将所面临的问题转化为方程问题;解这个方程或讨论这个方程,得出相关的结论;将所得出的结论再返回到原问题中去。 2数形结合思想 在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。 3分类讨论思想 在数学中,我们常常需要根据