.9.3 二重积分的应用定积分应用的元素法也可推广到二重积分,使用该方法需满足以下条件:1、所要计算的某个量对于闭区域具有可加性(即:当闭区域分成许多小闭区域时, 所求量相应地分成许多部分量,且)。2、在内任取一个直径充分小的小闭区域时, 相应的部分量可近似地表示为 , 其中, 称为所求量的元素, 并记作。(注: 的选择标准为: 是直径趋于零时较更高阶的无穷小量)3、所求量可表示成积分形式 一、曲面的面积设曲面由方程给出,为曲面在面上的投影区域,函数在上具有连续偏导数和,现计算曲面的面积。在闭区域上任取一直径很小的闭区域(它的面积也记作),在内取一点,对应着曲面上一点,曲面在点处的切平面设为。 以小区域的边界为准线作母线平行于轴的柱面, 该柱面在曲面上截下一小片曲面,在切平面上截下一小片平面,由于的直径很小,那一小片平面面积近似地等于那一小片曲面面积。曲面在点处的法线向量( 指向朝上的那个 )为它与轴正向所成夹角的方向余弦为而 所以 这就是曲面的面积元素, 故故 【例1】求球面含在柱面() 内部的面积。