.第一章 复述和复变函数1.5连续 若函数在的领域内(包括本身)已经单值确定,并且,则称f(z)在点连续。1.6导数若函数在一点的导数存在,则称函数在该点可导。f(z)=u(x,y)+iv(x,y)的导数存在的条件(i) 、在点不仅存在而且连续。(ii)C-R条件在该点成立。C-R条件为1.7解析若函数不仅在一点是可导的,而且在该点的领域内点点是可导的,则称该点是解析的。 解析的必要条件:函数f(z)=u+iv在点z的领域内(i) 、存在。(ii)C-R条件在该点成立。解析的充分条件:函数f(z)=u+iv在领域内(i) 、不仅存在而且连续。(ii)C-R条件在该点成立。1.8解析函数和调和函数的关系拉普拉斯方程的解都是调和函数:+=0由此可见解析函数的实部和虚部都是调和函数。但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足CR条件。当知道f(z)=u(x,y)+iv(x,y)中的u(x,y)时,如何求v(x,y)?通过CR条件列微分方程第二章 复变函