1、2013年 4月考试大学物理第三次作业 一、填空题(本大题共 60 分,共 20 小题,每小题 3 分) 1. 一平面简谐机械波在媒质中传播时,若一质元在 t时刻的波的能量是 10J,则在( t+T)( T为波的周期)时刻该质元的振动动能是 _ 2. 一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为:其合振动的振幅为 _ 3. 一广播电台的平均辐射功率为 20KW,假定辐射的能流均匀分布在以电台为球心的球面上,那么距离电台为 10Km处电磁波的平均辐射强度为 _ 4. 一平面简 谐机械波在媒质中传播时,若一质元在 t时刻的波的能量是 16J,则在( t+T)( T为波的周期)时刻该质
2、元的振动势能是 _ 5. 用波长为 的单色光垂直入射在缝宽 a 4 的单缝上,对应衍射角为30 的衍射光,单缝可以划分为 _ 个半波带 6. 用波长为的平行单色光垂直照射折射率为 n 的劈尖上形成等厚干涉条纹,若测得相邻两明条纹的间距是 l ,则劈尖角为 _ 7. A、 B是简谐波波线上的两点,已知 B点的位相比 A点落后 /3 ,波长为 3m,则 A、 B两点相距 L _ m 8. 当波从一种介质透入第二种介质,设两种介质的相对折射率 n211,在第二种介质中波的频率 _ ,波速 _ ,波长 _ 9. 两质点沿水平轴线作相同频率和相同振幅的简谐振动。它们每次沿相反方向经过同一个坐标为 x 的
3、点时,它们的位移 x 的绝对值均为振幅的一半,则它们之间的相位差为 _ 10. 在截面积为 S 的圆管中,有一列平面简谐波在传播,其波的表达式为 y Acos( t-2 x/ ),管中波的平均能量密度是 W,则通过截面积 S的平均能流是 _ 11. 若在迈克尔逊干涉仪的可移动反射镜 M 移动 0.620mm的过程中,观察到干涉条纹移动了 2300 条,则所用的光波波长为 _ nm 12. 一束波长为 =600nm 的平行单色光垂直入射到折射率为 n 1.33 的透明薄膜上,该薄膜是放在空气中的。要使反射光得到最大限度的加强,薄膜最小厚度应为 _ 。 13. 质量为 m 的物体和一个轻弹簧组成弹
4、簧振子,其固有振动周期为 T 。当它作振幅为 A 的自由谐振动时,振动能量为 _ 14. 有一列简谐波在第一种介质中从 a 点 出发,行进了 l1 的路程后传入第二种介质,在第二种介质中又走了 l2 的路程后到达 b 点。若波的频率为 v ,在第一种介质中的波速为 u1 ,在第二种介质中的波速为 u2 ,则波在 b 点的振动比在 a 点的振动在时间上要落后 _ ,在相位上要落后 _ 15. 如果在固定端 x 0 处反射的发射波方程式是 y2 Acos2 ( t-x/ ),设反射波无能流损失,那么入射波的方程式是 y1 _ ,形成的驻波的表达式是 y _ 16. 一平面简谐波在 t =0 时的波
5、形曲线如图所示,波速 u =0.08m/s ,该波的波动方程为 _ 17. 18. 一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为 X0 ,此振子自由振动的周期 T _ 19. 一平面简谐波沿 x 轴正向传播,振幅 A =0.2m ,周期 T=2.0s ,波长 ,当 t =1.0s 时, x =1.0m 处的质点 a 的位移为 0.1m 并向负方向运动,则波的方程为 _ 20. 用平行的白光垂直入射在平面透射光栅上时,波长为 1=440nm 的第 3级光谱线,将与波长为 _ nm的第 2级光谱线重叠 二、计算题(本大题共 40 分,共 8 小题,每小题 5 分) 1. 一束平行的自然光,以 5
6、8 角入射到平面玻璃上,反射光束是完全线偏振光。问: (1) 透射光束的折射角是多少? (2) 玻璃的折射率是多少? 2. 一质点作简谐振动,其振动方程为 x=0.24cos(1/2t+1/3)(SI) ,试用旋转矢量法求出质点由初始状态( t=0的状态)运动到 x=-0.12m, v 0的状态所需最短时 t 3. 如图所示,牛顿环装置的平凸透镜与平板玻 璃有一小缝隙 e0现用波长为 l的单色光垂直照射,已知平凸透镜的曲率半径为 R,求反射光形成的牛顿环的各暗环半径 4. 日光照射到一层折射率为 1.33的薄油膜上,当我们观察方向与膜面法线成30 角时,可以观察到反射光为波长 500nm 的绿
7、色光。求油膜的最小厚度。如果从膜的法线方向看,反射光波长为多少?呈现什么颜色? 5. 可以利用空气劈尖测钢丝的直径。观察劈尖表面相干反射光形成的干涉条纹。已知入射光波长 =589nm 。 L=10.0m, 测得 50个明纹间距为 0.10m( 1)求钢丝的直径( 2)在空气劈尖中装进 折射率为 1.52的油,试求这时条纹的间距为多大? 6. 如果起偏器和检偏器的偏振化方向之间的夹角为 60 : (1) 假定没有吸收,问自然光通过起偏器和检偏器后,其出射光强与原来的入射光强之比是多少? (2) 如果起偏器和检偏器分别吸收了 10%的光能,则出射光强与原入射光强之比为多少? 7. 一平面单色光波垂
8、直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上,所用单色光的波长可以连续变化,只观察到 500nm 与 700nm这两个波长的光在反射中消失,油的折射率为 1.30,玻璃的折射率为 1.50,试求油膜的 厚度 8. 平行的白光垂直入射到光栅常数 d=4000nm 的光栅上,用焦距为 2m的透镜把通过光栅的光线聚焦在屏上,已知紫光的波长为 400nm,红光波长为 750nm,求: (1) 第二级光谱的紫光和红光的距离; (2) 第二级光谱的紫光和一级光谱中的红光的距离; (3) 证明此时的第二级和第三级光谱相互重迭 答案: 一、填空题( 60 分,共 20 题,每小题 3 分) 1. 参考答案:
9、 5J 解题方案: 动能和势能都占总能量的一半 评分标准: 2. 参考答案: A=0.05m 解题方案: 代入公式计算合成之后的振幅即可,也可以用旋转矢量图解三角形得到 评分标准: 3. 参考答案: 1.5910 -5 W/m2 解题方案: 用辐射功率除以球面面积即可 评分标准: 4. 参考答案: 8J 解题方案: 动能和势能都占总能量的一半 评分标准: 5. 参考答案: 4 解题方案: 最大光程差为 asin=2 ,可以分为 4个半波带 评分标准: 6. 参考答案: 解题方案: = e/l= /2nl 评分标准: 7. 参考答案: 0.5 解题方案: /3=2L/ 评分标准: 8. 参考答案
10、: 不变 变小 变短 解题方案: 频率与介质无关,因此不变,而 n2n1,波速变小, =vT ,因此波长也变短了 评分标准: 9. 参考答案: 2/3 解题方案: 画旋转矢量图,易知两相位分别为 /3和 - /3或者 2 /3和 -2 /3,结果都一样 评分标准: 10. 参考答案: 解题方案: P=WV/T WS /T 评分标准: 11. 参考答案: 5391 解题方案: 2300/2 0.62 评分标准: 12. 参考答案: 112.5nm 解题方案: 2ne+/2 k ,取 e的最小值即可 k 1 评分标准: 13. 参考答案: 解题方案: E=kA2/2 , T2=4 2m/k 评分标
11、准: 14. 参考答案: 解题方案: 评分标准: 15. 参考答案: Acos2 ( t-x/ )+ 2Acos ( 2 x/ + ) cos ( 2 t+ ) 解题方案: 入射波和反射波有的相位差,然后把入射波和反射波的方程相加即可得到驻波表达式 评分标准: 16. 参考答案: 解题方案: 由上图可得波长等于 0.4m , 振幅等 于 0.04m 。计算出频率,并确定出初相位为 /2 评分标准: 17. 参考答案: 解题方案: 代入公式分别计算合成之后的振幅和初相即可 评分标准: 18. 参考答案: 解题方案: kx0 mg, 2 k/m, T 2 / 评分标准: 19. 参考答案: 解题方
12、案: a 点处相位为 评分标准: 20. 参考答案: 660 解题方案: dsin 31 2 评分标准: 二、计算题( 40 分,共 8 题,每小题 5 分) 1. 参考答案: 解题方案: 评分标准: 分析出此时满足布儒斯特定律 4 分,得出折射角 3 分,得出 n23 分 2. 参考答案: 解题方案: 评分标准: 3. 参考答案: 解题方案: 评分标准: 几何关系 3分,牛顿环干涉条件 5分,结果 2分 4. 参考答案: 解题方案: 评分标准: 反射波加强条件 3 分,得出最小膜厚 2 分,法向反射加强条件 3 分,得出波长颜色 2 分 5. 参考答案: 解题方案: 评分标准: ( 1 )明
13、纹间距表达式(两种)各 2 分,钢丝直径表达式 2 分,代入求出 d 得 2 分 ,( 2 )求出明纹间距 l 得 2 分 6. 参考答案: 解题方案: 评分标准: 求出通过起偏器后的光强 3 分,( 1 )求出通过检偏器后的光强与自然光光强的比值 3 分,( 2 )结果 4 分 7. 参考答案: 解题方案: 评分标准: 分析出两波长对应的干涉极小的级次 3 分,暗纹公式 3 分,解出 k 得 2 分,得出 e 结果 2 分 8. 参考答案: 解题方案: 评分标准: 光栅主极大公式 2 分,衍射屏上的位置公式 2 分,( 1 )结果 2 分,( 2 )结果 2 分,( 3 )分析正弦值的大小得出结论 2 分