第九章 解析几何,理解数形结合思想,能通过直线与圆锥曲线(重点是与椭圆抛物线)的位置关系解答相应问题 请注意 此部分是高考中的重点和难点,多与数形结合,设而不求等方面结合,应引起足够重视,1直线与圆锥曲线的位置关系 要解决直线与圆锥曲线的位置关系问题,可把直线方程与圆锥曲线方程联立,消去y(或消去x)得到关于x(或关于y)的一元二次方程如联立后得到以下方程: Ax2BxC0(A0),B24AC. 若0,则直线与圆锥曲线有两个不同的公共点,2弦长公式 直线与圆锥曲线相交时,常常借助根与系数的关系解决弦长问题直线方程与圆锥曲线方程联立,消去y后得到关于x的一元二次方程当0时,直线与圆锥曲线相交,设交点为A(x1,y1),B(x2,y2),直线AB的斜率为k,则直线被圆锥曲线截得的弦长,4解决直线与圆锥曲线关系问题的一般方法 (1)解决焦点弦(过圆锥曲线焦点的弦)的长的有关问题,注意应用圆锥曲线的定义和焦半径公式 (2)已知直线与圆锥曲线的某些关系求圆锥曲线的方程时,通常利用待定系数法 (3)圆锥曲线上的点关于某一直线的对称问题,解此类题的方法是利用圆锥曲线上的两点所在的直线与对称直线垂直,