第二讲 导数、微分及其应用一、 导数、偏导数和微分的定义对于一元函数 对于多元函数 对于函数微分 注:注意左、右导数的定义和记号。二、 导数、偏导数和微分的计算:1)能熟练运用求导公式、运算法则计算导数、偏导数和微分;2)隐函数、参数方程的导数3)高阶导数:特别要注意莱布尼茨公式的运用。例1:求函数在处的阶导数。解:,所以有 (1)利用莱布尼茨公式对(1)两边求阶导数得 当时, 由此可得 例2:求的阶导数。解: 设其中,则有注:计算时注意一阶微分不变性的应用。4)方向导数与梯度三、 导数、偏导数及微分的应用1)达布定理:设在上可
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。