导数在研究函数中的应用(学生)导数在研究函数中的应用最新考纲1了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)2了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).知识梳理1函数的导数与单调性的关系函数yf(x)在某个区间内可导,则(1)若f(x)0,则f(x)在这个区间内单调递增(2)若f(x)(3)若f(x)0,则f(x)在这个区间内是常数函数2函数的极值与导数3.(1)函数f(x)在a,b上有最值的条件如果在区间a,b上函数yf(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值(2)求yf(x)在a,b上的最大(小)值的步骤求函数yf(x)在(a,b)内的极值将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值辨析感