第一章 复数与复变函数第一节 复数1复数域每个复数具有的形状,其中和,是虚数单位;和分别称为的实部和虚部,分别记作,。复数和相等是指它们的实部与虚部分别相等。如果,则可以看成一个实数;如果,那么称为一个虚数;如果,而,则称为一个纯虚数。复数的四则运算定义为:复数在四则运算这个代数结构下,构成一个复数域,记为C。2复平面C也可以看成平面,我们称为复平面。作映射:,则在复数集与平面之建立了一个1-1对应。横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为-平面,w-平面等。3复数的模与辐角复数可以等同于平面中的向量。向量的长度称为复数的模,定义为:;向量与正实轴之间的夹角称为复数的辐角,定义为:()。复数的共轭定义为:;复数的三角表示定义为:;复数加法的几何表示:设、是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:关于两个复数的和与差的模,有以下不等式:(1)、;(2)、;(3)、;(4)、;(5)、;(6)、;例11试用复数表示圆的方程: ()