1.1变化率与导数1.1.1变化率问题1.1.2导数的概念学习目标1了解导数概念的实际背景2会求函数在某一点附近的平均变化率3会利用导数的定义求函数在某点处的导数知识链接很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢从数学的角度,如何描述这种现象呢?答气球的半径r(单位:dm)与体积V(单位:L)之间的函数关系是r(V),(1)当V从0增加到1 L时,气球半径增加了r(1)r(0)0.62 (dm),气球的平均膨胀率为0.62(dm/L)(2)当V从1 L增加到2 L时,气球半径增加了r(2)r(1)0.16 (dm),气球的平均膨胀率为0.16(dm/L)可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了预习导引1函数的变化率定义实例平均变化率函数yf(x)从x1到x2的平均变化率为,简记作:平均速度;曲线割线的斜率瞬时变化率函数yf
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。