初中数学竞赛训练题1.(1)如图所示,四边形ABCD为正方形,点G在DC延长线上,且四边形CEFG也为正方形,连DE交BG于点H,求证:点H在AF上(2)推广到一般情况,如图所示,若点G不在直线DC上,其他条件不变,求证:点H在AF上解析:(1) 法一:本小题可采用第(2)题的方法。法二:证点H在AF上不妨考虑构建平面直角坐标系,表示A,H,F三点坐标即可。(2)证A,H,F三点共线即证AHB=GHF,经观察易知,AHB=GHF=45,所以下面只需求出这两个角的度数即可。不难发现BGDE,则A,B,H,D四点共圆,则AHB=ADB=45,类似地可得到GHF=45。答案:(1) 解析法:以D点为原点,DC为x轴,AD为y轴构建平面直角坐标系设AD=1,CG=a则易知A(0,1),G(a+1,0),B(1,1),C(1,0)E(1,a),F(a+1,a)设直线DE解析式为y=kxk=aDE:y=ax同理可得,BG:y=-1/a+1+1/a,AF:y=(a-1)x/