合情估计法(PEM)就是通过观察分析,对问题给以定性或粗略估计的一种方法(口语相当于毛估估法),教学实践中属于启发式教学法,在大学数学教学中具有广泛的应用。一般通过观察分析(审题),根据经验(已学的基础知识等)或特例或抽象性质具体化等,对问题给出合情(毛估估)解决的方法。合情估计法也借助观察法,观察分为直接观察和间接观察,题前观察(审题)、题中观察以及题后观察(类似验证)或相互结合综合分析应用。从推理角度分析,合情估计法属于合情推理方法,不能取代严密的推导,只是给出解决问题的启示,问题的解决必须采用演绎等严谨的数学推理方法(即论证推理);但是合情估计法抓住了事物的本质、问题的核心,有其解决问题的内在逻辑(合情)。本文主要通过一些案例,初步探索合情估計法在大学数学教学中的应用。?印象比较深的是,大学高等数学期中测验的一道题,需要利用微分的近似计算给出 的近似值。有同学给出近似值为0.98,接近1,相差较大。如果事先根据合情估计法,大致确定 接近 ,其真值在0.5左右,甚至进一步根据单调性应该小于0.5,那么就知道演算过程肯定出错了。再如,如果计算得出一个人的步行速度为10