正态性检验方法的比较理论部分正态分布是许多检验的基础,比如F检验,t检验,卡方检验等在总体不是正太分布是没有任何意义。因此,对一个样本是否来自正态总体的检验是至关重要的。当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正太的检验,我们就没有理由否认那些和正太分布有关的检验有意义,下面我就对正态性检验方法进行简单的归纳和比较。一、图示法1. P-P图以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从正态分布,则样本点应围绕第一象限的对角线分布。2. Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一象限的对角线分布。以上两种方法以Q-Q图为佳,效率较高。3. 直方图(频率直方图)判断方法:是否以钟型分布,同时可以选择输出正态性曲线。4. 箱线图 判断方法:观察矩形位置和中位数,若矩形位于中间位置且中位数位于矩形的中间位置,则分布较为对称,否则是偏态