充分条件和必要条件解释:如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B,A就是B的充分必要条件(简称:充要条件)。 简单地说,满足A,必然B;不满足A,必然不B,则A是B的充分必要条件。(A可以推导出B,且B也可以推导出A)例如: 1. A=“三角形等边”;B=“三角形等角”。 2. A=“某人触犯了刑律”;B=“应当依照刑法对他处以刑罚”。 3. A=“付了足够的钱”;B=“能买到商店里的东西”。 例子中A都是B的充分必要条件:其一、A必然导致B;其二,A是B发生必需的。区分:假设A是条件,B是结论 由A可以推出B由B可以推出A则A是B的充要条件(充分且必要条件) 由A可以推出B由B不可以推出A则A是B的充分不必要条件 由A不可以推出B由B可以推出A则A是B的必要不充分条件 由A不可以推出B由B不可以推出A则A是B的不充分不必要条件 简单一点就是:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件 如果能由结论推出 条件,但由条件推不出结论。此条件为