企业最优生产的数学模型第九组:张乐 康倩妮 罗少梅 (西安航空学院,西安 710077)摘要本文针对企业及工厂应该怎样合理安排生产计划而获得最大利润做了简单分析,主要用于解决企业及工厂在各种互相矛盾,互相排斥的约束条件下如何安排生产获取最大利润,建立了生产量对利润影响的线性规划模型。对于问题一,根据对影响利润的因素的初步分析,综合得出其主要因素有:每种产品的单件利润、生产单位各种产品所需的有关设备台时、生产量、最大需求量、库存量、每月的工作时间、设备维修。综合考虑多种因素,利用线性规划来建立模型解决问题,即将每月各种产品的最大需求量、一月初无库存、任何时候每种产品的存储量均不能超过100件、六月末各种产品各储存50件作为约束条件,最大利润作为目标函数,利用lingo11.0软件求解,得出最大利润为:93.71518万元。对于问题二,要求重新安排维修,并以最大利润作为前提,类比于问题一,并在问题一模型的基础上,添加,分别为第种设备在第个月工作的台数和第种设备在第个月维修的台数。并定义为在不进行维修的情况下工作的台数,则=+;表示第种设备在第月维修的台数等于每种设备