第二章 建模方法论2.1 数学模型系统模型的表示方式有许多,而其中数学方式是系统模型的最主要的表示方式。系统的数学模型是对系统与外部的作用关系及系统内在的运动规律所做的抽象,并将此抽象用数学的方式表示出来。本节将讨论建立数学模型作用、数学模型与集合及抽象的关系、数学建模的形式化表示、数学模型的有效性与建模形式化、数学模型的分类等问题。2.1.1 数学建模的作用1、提高认识通信、思考、理解三个层次。首先,一个数学描述要提供一个准确的、易于理解的通信模式;除了具有清楚的通信模式外,在研究系统的各种不同问题或考虑选择假设时,需要一个相当规模的辅助思考过程;一旦模型被综合成为一组公理和定律时,这样的模型将使我们更好地认识现实世界的现象。因此,可把现实世界的系统看成是由可观测和不可观测两部分组成。2、提高决策能力管理、控制、设计三个层次。管理是一种有限的干预方式,通过管理这种方式人们可以确定目标和决定行为的大致过程,但是这些策略无法制定得十分详细。在控制这一层,动作与策略之间的关系是确定的,但是,由于控制中的动作仅限于在某个固定范围内进行选择,所以仍然限制