异面直线巧辨别异面直线的三种判别方法 在学习立体几何的时候,大家经常会遇到证明两直线异面的题目.这一类的题目大家看上去会觉得很简单,因为直观看上去两条直线很明显不在一个平面内,但是要证明起来却又会觉得不知从何处下手.这次的专题就要介绍给大家证明异面直线的三种最基本的思路:定义法、反证法和定理法.定义法 一一排除我们知道,异面直线的定义就是不共在任何平面内的两条直线.因为空间内的两条直线只有四种位置关系:重合、平行、相交和异面.所以,根据定义,我们只需要排除两条直线重合、平行和相交的可能,就可以证明两直线异面了.这种思路非常的简单,但是要分别证明不重合、不平行、不相交也是很烦琐的工作,所以,一般情况下,我们不常使用这种思路.(除非,你真的想不到其它的证明方法)反证法 找出矛盾反证法是我们在数学证明时常用的一种思路,也就是先假定命题的结论不成立,然后进行推理,如果出现与已知条件矛盾或者与公理、定理矛盾的情况,就可以说明我们的假定不成立,也就说明了原命题是正确的.在异面直线判定中利用反证法,也就是先假设两条直线共面.有的题目很简单,根据两直线共面可以推