“数形结合”在初中数学中的运用一、以数助形“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的体现在数学解题中, 包括“以数助形”和“以形助数”两个方面“数”与“形”好比数学的“左右腿”全面理解数与形的关系,就要从“以数助形”和“以形助数”这两个方面来体会此外还应该注意体会“数”与“形”各自的优势与局限性,相互补充“数缺形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事非”华罗庚的这四句诗很好地总结了“数形结合、优势互补”的精要,“数形结合”是一种非常重要的数学方法,也是一种重要的数学思想,在以后的数学学习中有重要的地位要在解题中有效地实现“数形结合”,最好能够明确“数”与“形”常见的结合点,从“以数助形”角度来看,主要有以下两个结合点:(1)利用数轴、坐标系把几何问题代数化(在高中我们还将学到用“向量”把几何问题代数化);(2)利用面积、距离、角度等几何量来解决几何问题,例如:利用勾股定理证明直角、利用三角函数研究角的大小、利用线段比例证明相似等 例1已知平面直角坐标系中任意两点和之间的距离可以用公