1、姓名 班级 座号 潘集区 2008-2009 年度第二学期九年级数学第六次联考试卷考生注意:本卷共八大题,计 23 小题,满分 150 分,考试时间 120 分钟一、选择题(本题共 10 小题,每小题 4 分,满分 40 分)1下列运算正确的是( ) 532a532a 532)(a10a522在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约 35000000 个,将这个数字用科学记数法表示为( )3.510 5 3.510 6 3.510 7 3.510 8 3下列多项式中,不能分解因式的是( )x 2xy x2xy x 2y 2 x 2y 24四个直立在地面上的字母广告牌在不同情况
2、下,在地面上的投影(阴影部分)效果如图。则在字母“L”、“K”、“C ”的投影中,与字母“N ”属同一种投影的有( )“L”、“K” “C ” “ K” “L”、“K”、“C”5某书店把一本新书按标价的九折出售,仍可获利 20%,若该书的进价为 21 元,则标价为( )26 元 27 元 28 元 29 元6根据图中箭头的指向的规律,从2007到2008再到2009,箭头的方向是以下图示中的( )7如图,PA 为O 的切线,A 为切点,PO 交O 于点 B,PA8,PB4,则 tanP 的值为( ) 43543三 四 五 六 七 八 总分题目 一 二15 16 17 18 19 20 21 2
3、2 23得分901 2 5 6 108743 A B C D8如图是根据某班 40 名同学一周的体育锻炼情况绘制的条形统计图。那么关于该班 40 名同学一周参加体育锻炼时间的说法错误的是( )极差是 3 中位数为 8众数是 8 锻炼时间超过 8 小时的有 21 人9二次函数 图象上部分的对应值如下表,则 时,x 的取值范围是( 2y=ax+bc y0)x 2 1 0 1 2 3y 4 0 2 2 0 412 或 x 8),就站到A 窗口队伍的后面. 过了 2 分钟,他发现 A 窗口每分钟有 4 人买了饭离开队伍,B 窗口每分钟有6 人买了饭离开队伍,且 B 窗口队伍后面每分钟增加 5 人。(1
4、)此时,若小杰继续在 A 窗口排队,则他到达窗口所花的时间是多少(用含 a 的代数式表示)球 两红 一红一白 两白礼金券(元) 10 5 10?(2)此时,若小杰迅速从 A 窗口队伍转移到 B 窗口队伍后面重新排队,且到达 B 窗口所花的时间比继续在 A 窗口排队到达 A 窗口所花的时间少,求 a 的取值范围(从 A 窗口到 B 窗口时间忽略不计)。六、(本题满分 12 分)21暑假期间,王明到承德雾灵山风景区景区主峰为燕山最高峰(海拔达 1834 米),位于承德市兴隆县境内旅游。导游介绍山区气温会随着海拔高度的增加而下降,提醒大家上山要多带一件衣服,王明从旅馆中得到一份残缺的雾灵山地区海拔和
5、气温数据表(温差不超过 2),数据如下:海拔高度 x(米) 400 500 600 700 800 气温 y() 292 286 280 274 268 (1)以海拔高度为 x 轴,根据上表提供的数据在下列直角坐标系中描点并连线。(2)观察(1)中所画出的图像,猜想 y 与 x 之间函数关系,求出所猜想的函数关系表达式,并根据表中提供的数据验证你的猜想;(3)如果气温低于 20就需要穿外套,请问王明需不需要携带外套上山?七、(本题满分 12 分)22如图,ABC 是等腰直角三角形,其中 CA=CB,四边形 CDEF 是正方形,连接 AF、BD。(1)观察图形,猜想 AF 与 BD 之间有怎样的
6、关系,并证明你的猜想;(2)若将正方形 CDEF 绕点 C 按顺时针方向旋转,使正方形CDEF 的一边落在 ABC 的内部,请你画出一个变换后的图Oy(C)x(米 )31.030.429.829.228.628.027.426.826.2200 400 600 800 米BA形,并对照已知图形标记字母,猜想此时 AF 与 BD 之间的关系,写出结论。(不必证明)八、(本题满分 14 分)23九(2)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.小组讨论后,同学们做了以下三种试验: 图案(1) 图案(2) 图
7、案(3) 请根据以上图案回答下列问题: (1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为 6m,当 AB 为 1m,长方形框架 ABCD 的面积是_ m 2;(2)在图案(2)中,如果铝合金材料总长度为 6m,设 AB 为 m,长方形框架 ABCD 的面积为 S x_(用含 的代数式表示);当 AB_m 时, 长方形框架 ABCD 的面积 S 最大;x在图案(3)中,如果铝合金材料总长度为 m, 设 AB 为 m,当 AB_m 时, 长方形框架lABCD 的面积 S 最大.(3)经过这三种情形的试验,他们发现对于图案(4)这样的情形也存在着一定的规律 探索: 如图案(4),如果铝合金材料总长度为 m 共有 n 条竖档时, 那么当竖档 AB 多少时,长l方形框架 ABCD 的面积最大. 图案(4)