联邦理科 高二寒假 第四讲 圆锥曲线中的定点定值问题一、直线恒过定点问题 例1. 已知动点在直线上,过点分别作曲线的切线, 切点为、, 求证:直线恒过一定点,并求出该定点的坐标; 解:设,整理得:同理可得: ,又 ,.例2、已知点是椭圆上任意一点,直线的方程为, 直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒 过一定点G,求点G的坐标。解:直线的方程为,即 设关于直线的对称点的坐标为 则,解得 直线的斜率为 从而直线的方程为: 即 从而直线恒过定点 二、恒为定值问题例3、已知椭圆两焦点、在轴上,短轴长为,离心率为,是椭圆在第一 象限弧上一点,且,过P作关于直线F1
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。