1. 极坐标及参数方程知识点1伸缩变换:设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2.极坐标系的概念:在平面内取一个定点,叫做极点;自极点引一条射线叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。3点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为. 极坐标与表示同一个点。极点的坐标为.4.若,则,规定点与点关于极点对称,即与表示同一点。如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的。 5极坐标与直角坐标的互化:6。圆的极坐标方程:在极坐标系中,以极点为圆心,为半径的圆的极坐标方程是 ; 在极坐标系中,以 为圆心, 为半径的圆的极坐标方程是 ;在极坐标系中,以 为圆心,为半径的圆的极坐标方程是;7.在极坐标系中,表示以极点为起点的一条射线;表示过极