曲线拟合、回归模型介绍一、直线拟合回归:直线回归是最简单的回归模型,也是最基本的回归分析方法, 将所有的测试点拟合为一条直线,其方程式为:y=a+bx 二、二次多项式拟合回归:二次多项式成抛物线状,开口向下或者向上,在很多ELISA实验中,拟合近似于二次多项式的升段或者降段,由于曲线的特性,同一个浓度值在曲线图上可能表现出没有对应的OD值、有一个OD值,或者两个OD值,所以使用二次多项式拟合时,最好保证取值的范围都落在曲线的升段或者降段,否则哪怕是相关系数很好也很可能与实际的值不一致。其方程式为:y = a + b x + c x2 ,形状如下图:三、三次多项式拟合回归:三次多项式像倒状的S形,在实验结果刚好在曲线的升段或者降段的时候,效果还可以,但是对于区间较广的情形, 由于其弯曲的波动,三次方程拟合模拟不一定很好.跟二次方程拟合一样,看曲线的相关系数的同时也要看计算的点在曲线上的分布,这样才算出理想的结果,本软件计算值时,选择性的取相对于浓度或者OD值