PCA原理与应用PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线性代数最有价值的结果之一。1、PCA原理从线形代数的角度来看,PCA的目标就是使用另一组基去重新描述得到的数据空间。而新的基要能尽量揭示原有的数据间的关系,而这个基即最重要的“主元”。PCA的目标就是找到这样的“主元”,最大程度的去除冗余和噪音的干扰。设:Y = PX(1)并定义:pi表示P的行向量,xi表示X的列向量,yi表示Y的列向量。公式1表示不同基之间的转换,在线性代数中,它表示P从X到Y的转换矩阵,在几何上,P对X进行旋转和拉伸得到Y。将公式1展开: