Possion 方程的差分方法课程名称: 微分方程数值解 学生姓名: 张弘 一、问题描述二、问题分析I偏微分方程的数值解法主要有有限差分法和Galerkin有限元法。用差分法和有限元法将连续问题离散化的步骤是:1、对求解区域做网格剖分用有限个网格节点代替连续区域。2、微分算子离散化。3、把微分方程的定解问题化为线性代数方程组的求解问题。差分法和有限元方法的主要区别是离散化的第二步,差分法从定解问题的微分或积分形式出发,用数值微商或数值积分公式到处相应的线性代数方程组,有限元法从定解问题的变分形式出发,用Ritz-Galerkin法导出相应的线性代数方程组。差分法的基本问题有:(1) 对求解区域做网格剖分一维情形为把区间分为等距或不等距的区间,二维情形是把区域分割成均匀或不均匀的矩形,其边与坐标轴平行,也可分割成小三角形或凸四边形。(2) 构造逼近微分方程定解问题的差分格式有两种构造差分格式的方法:直接差分化法和有限体积法。(3) 差分解的存在唯一性,收敛性和稳定性研究(4)