二次函数的存在性问题之菱形1. 如图,抛物线y=ax2+bx2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(2,0),点P为抛物线上的一个动点,过点P作PDx轴于点D,交直线BC于点E(1)求抛物线解析式; (2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由 2. 如图,直线 与 轴、轴分别交于 、两点,抛物线 经过 、两点,与 轴的另一个交点为 ,连接 (1)求抛物线的解析式及点的坐标; (2)点 在抛物线上,连接 ,当 时,求点 的坐标; (3)点 从点 出发,沿线段 由 向 运动,同时点 从点 出发,沿线段 由 向 运动, 、 的运动速度都是每秒 个单位长度,当 点到达 点时, 、 同时停止运动,试问在坐标平面内是否存在点