1、定义:一般地,如果是常数,那么叫做的二次函数。自变量的取值范围是全体实数。2、二次函数的性质:(1)抛物线的顶点是坐标原点,对称轴是轴;(2)函数的图像与的符号关系: 当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点。(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为。(P21-12)3、二次函数 的图像是对称轴平行于(包括重合)轴的抛物线。4、二次函数用配方法可化成:的形式,其中。5、二次函数由特殊到一般,可分为以下几种形式:;。6、抛物线的三要素:开口方向、对称轴、顶点。 的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同。 平行于轴(或重合)的直线记作.特别地,轴记作直线。(P23-9,10)7、顶点决定抛物线的位置。几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同。8、求抛物线的顶点、对称轴的方法 (1)公式法:,顶点是,对称轴是直线。(P26-9) (