第二节 二重积分的计算法教学目的:熟练掌握二重积分的计算方法教学重点:利用直角坐标和极坐标计算二重积分教学难点:化二重积分为二次积分的定限问题教学内容:利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的.一、利用直角坐标计算二重积分我们用几何观点来讨论二重积分的计算问题.讨论中,我们假定 ;假定积分区域可用不等式 表示,其中, 在上连续.据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积.在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为从而有 (1)上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分.这