第四章 导热问题的数值解法1.重点内容: 掌握导热问题数值解法的基本思路; 利用热平衡法和泰勒级数展开法建立节点的离散方程。 2.掌握内容:数值解法的实质。3.了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 由前述可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法;(2)有限元方法;(3)边界元方法。数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 分析解法与数值解法的异同点:相同点:根本目的是相同的,即确定 ; 。不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;