牛吃草问题是牛顿问题,因牛顿提出而得名的。“一堆草可供10头牛吃3天,供6头牛吃几天?”这题很简单,用3106=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。因为草每天走在生长,草的数量在不断变化。这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。解答这类题的关键是要想办法从变化中找到不变的量。牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。正确计算草地上原有的草及每天长出的草,问题就容易解决了。解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数常用到五个基本公式,分别是1) 设定一头牛一天吃草量为“1”2)草的生长速度草量差时间差;3)原有草量牛头数吃的天数草的生长速度吃的天数;4)吃的天数原有草量(牛头数草的生长速度);5)牛头数原有草量吃的天数草的生长速度。例1:一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草