内点法介绍(Interior Point Method) 在面对无约束的优化命题时,我们可以采用牛顿法等方法来求解。而面对有约束的命题时,我们往往需要更高级的算法。单纯形法(Simplex Method)可以用来求解带约束的线性规划命题(LP),与之类似的有效集法(Active Set Method)可以用来求解带约束的二次规划(QP),而内点法(Interior Point Method)则是另一种用于求解带约束的优化命题的方法。而且无论是面对LP还是QP,内点法都显示出了相当的极好的性能,例如多项式的算法复杂度。本文主要介绍两种内点法,障碍函数法(Barrier Method)和原始对偶法(Primal-Dual Method)。其中障碍函数法的内容主要来源于Stephen Boyd与Lieven Vandenberghe的Convex Optimization一书,原始对偶法的内容主要来源于Jorge Nocedal和Stephen J. Wright的Numerical Optimization一书(第二版)。为了便于与原书对照理解,后面的命题与公式分别采用了