曲面的切平面与法线方程设 中曲面的方程为F (x , y , z) = 0,函数F (x , y , z)在曲面上点 处可微,且 ,过点 任意引一条位于曲面上的曲线。设其方程为 ,且 对应于点 ; 不全为零。由于曲线在上,则有 及 。该方程表示了曲面上任意一条过点 的曲线在该点的切线都与向量 垂直,并且这些切线都位于同一平面上,这个平面就称为曲面在点 处的切平面. 点 称为切点. 向量 称为曲面在点 处的一个法向量。 记为 。基本方法:1、设点 在曲面F(x, y, z)=0上,而F(x, y, z)在点 处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点 处的切平面方程为.法线方程为.2、设点 在曲面z = f (x, y)上,且z = f (x, y) 在点 M0 (x0, y0) 处存在连续偏导数,则该曲面在点 处的切平面方程为.过X0的法线方程为.注:方法2实际上是方法1中取 的情形.3、若曲面由参数方程x = x(u, v) , y = y(u, v) , z = z(u, v)