1、第 38 卷 第 6 期 稀 有 金 属 2014 年 11 月Vol.38 No.6 CHINESE JOURNAL OF RARE METALS Nov. 2014收稿日期:2013-12-25 ;修订日期:2014-06-12基金项目:国家自然科学基金项目(50961008,51061008);国家科技部重点基础研究发展计划(2011CB612203);甘肃省科技计划(145RJZA090) ;甘肃省青年科技基金计划(1107RJYA275);甘肃省有色金属新材料省部共建国家重点实验室开放基金(SKL12008) 资助作者简介:李春燕(1979-),女,甘肃白银人,博士,副教授;研究方向
2、:非晶合金、复合材料,电话:0xxx-xxxxxxx ,E-mail: Al 含量对 Zr 基块体非晶合金力学性能的影响李春燕 1,2,寇生中 1,2,赵燕春 1,2,袁小鹏 1,袁子洲 1,2(1. 兰州理工大学材料科学与工程学院 甘肃 兰州 730050;2. 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050)摘要:用铜模吸铸法制备了(Zr64.8/90Cu14.85/90Ni10.35/90)90+xAl10-x(x=-4,-3,-2,0,2,4,6)块体合金,利用 X 射线衍射仪(XRD) 、万能试验机、显微硬度计和扫描电镜(SEM)研究了 Al 含
3、量改变对 Zr 基块体非晶合金力学性能的影响。结果表明:随着 Al 含量的减小,合金先是从非晶相为主的非晶/晶体复合材料转变为完全非晶材料,接着转变为以晶体相为主的非晶/晶体复合材料,最后转变为完全晶体材料。表明通过调整 Al 的含量,可以制备出具有完全非晶结构的 Zr 基块体非晶合金。当 x=-2 时,即合金成分为 Zr63.36Cu14.52Ni10.12Al12 时,合金为完全非晶结构,该合金的室温压缩塑性应变达到 20.6%,应力-应变曲线体现出了“加工硬化”特性,屈服强度( s)、极限强度( m)和断裂强度( f)分别为 1740.6,2030.7 和1510.5MPa。表明通过调整
4、 Al 的含量,可以制备出具有优良室温压缩塑性的 Zr 基块体非晶合金。随着 Al 含量的减小,合金试样的显微硬度的总体趋势为先增大再减小。当 x=2 时,合金为非晶 /晶体复合材料,该合金具有较高的显微硬度HV719.8。关键词:SPE 纯水电解;微孔层;扩散层;气液传输中图分类号:TK91 文献标识码: A 文章编号:10004343 (2012)028305Mechanical Properties of Zr-based Bulk Metallic Glasses with Different Al ContentsLi Chunyan1,2, Kou Shengzhong1,2, Z
5、hao Yanchun1,2,Yuan Xiaopeng1, Yuan Zizhou1,2(1.College of Material Science and Technology, Lanzhou University of Technology, Lanzhou 730050, China; 2. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China)Abstract: (
6、Zr64.8/90Cu14.85/90Ni10.35/90)90+xAl10-x bulk alloys with x=-4, -3, -2, 0, 2, 4 and 6 were prepared with copper mold casting method. The effects of Al contents on mechanical properties of Zr-based bulk metallic glasses were studied by X-ray diffraction(XRD), universal testing machine, microhardness
7、tester and scanning electron microscope(SEM). The results showed that with the decrease of the content of Al element, the structure of alloys changed from amorphous/crystal composite materials with mainly amorphous phase into completely amorphous materials, and then into amorphous/crystal materials
8、with mainly crystalline phase, and finally into fully crystalline materials. It meant that Zr-based bulk metallic glasses with completely amorphous structure could be fabricated by adjusting Al content. The structure of the alloy was completely amorphous when x=-2, with alloy composition of Zr63.36C
9、u14.52Ni10.12Al12, and the compressive plastic strain (p) of the alloy was up to 20.6%. The yield strength (s), maximum strength (m) and facture strength (f) were 1740.6, 2030.7 and 1510.5MPa, respectively, and the “work-hardening” characteristic could be seen from the stress-strain curve. It demons
10、tated that Zr-based bulk metallic glasses with excellent 284 稀 有 金 属 28 卷compressive plasticity and high compressive strength could be fabricated by adjusting Al content. With the decrease of the Al content, the microhardness of alloy samples first increased and then decreased. When x=2, the structu
11、re of the alloy was amorphous/crystal composite material, and the hardness reached HV719.8, which indicated that higher microhardness was obtained in the alloy. Key words: Zr-based bulk metallic glasses; mechanical properties; plastic strain; work-hardening; microhardness固体聚合物电解质(Solid Polymer Elect
12、rolyte,简称 SPE)纯水电解技术具有效率高、气体纯度高、安全可靠寿命长等优点 1-2。被公认为制氢领域重点发展、甚至首选的方法。催化剂电催化活性与气液传输能力是影响 SPE 纯水电解池性能的主要因素,此前有大量集中于高活性催化剂的研究报道,实现了较高的电解性能 3-6。文献7,8研究了具有梯度扩散层燃料电池的排水1 实 验1.1 膜电极制备1.1.1 构建有微孔层阳极转移膜的制备阳极催化剂采用 Adams 法制备的 IrO2,微孔层材料为 TiC。 (1)微孔层浆料配制:将 TiC、造孔剂(草酸铵) 、PTFE 按一定比例同分散剂异丙醇混合,冰浴超声数百次左右而形成浆料;(2)阳极浆1
13、.1.2 阴极转移膜的制备1.2 单池组装1.3 单池测试2 结果与讨论如图 1 在温度 80,常压的工作条件下,不同膜电极 CCM-1 与 CCM-2 的性能对比图。3 结 论通过控制 PTFE 量、喷涂温度、造孔剂草酸铵量构建了疏水性、孔结构梯度变化的催化层-微孔层-扩散层立体化气液传输通道 参考文献:1 Singh Akanksha, Singh B K, Davidson D J, Srivastava O N. A patent for generation of electrolytic hydrogen by a cost effective and cheaper route
14、J.Hydrogen Energy, 2004, 29(11):1191. 2 Ni Meng, Leung Michael K H, Leung Dennis Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant J.Energy Conversion and Management, 2008, 49(10) :2748.3 Stphane Fierro, Agnieszka Kapaka, Christos Comninell
15、is. Electrochemical comparison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution J.Electrochemistry Communications, 2010, 12(1): 172.4 Wang Jiantao. Biological hydrogen production and hydrogen generation J. Energy Conservation
16、Tecnology,2010,28(159):57.5 Berenguer R, Quijada C, Moralln E. Electrochemical characterization of SnO2 electrodes doped with Ru and Pt J.Electrochimica Acta, 2009, 54(14):5230-5238.6 Marshall Aaron T, Haverkamp Richard G. Electrocatalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticl
17、es J. Electrochimica Acta, 2010, 55(6): 1978-1984.7 Mathias M, Roth J, Fleming J, Lehnert W. Diffusion media materials and characterisation. Handbook of Fuel Cells-Fundamentals, Technology and ApplicationsM. New York: John Wiley and Sons, Ltd; 2003.Capter 46,4.8 Sylvie Escribano, Jean-Franois Blacho
18、t, Jrmy Ethve, Arnaud Morin, Renaut Mosdale. Characterization of PEMFCs gas diffusion layers properties J. Power Sources, 2006, 156(1):8.9 Ismail M S, Damjanovic T, Ingham D B, Pourkashanian M, Westwood A. Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells J.Power Sources 2010, 195(9):2700.