三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。一、知识回顾1、三角形中位线定理:的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半3、应用时注意的几个细节:定理的使用前提:三角形或梯形。定理使用时,满足的具体条件:两条边的中点,且连接这两点,成一条线段。定理的结论:位置上:与第三边是平行的;与底是平行的(梯形)大小上:等于第三边的一半;等于两底和的一半(梯形)。在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)2已知中位线长度和高,就能求出梯形的面积S梯=2Lh2=Lh中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用