构造辅助函数求解导数问题对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧技法一:“比较法”构造函数典例(2017广州模拟)已知函数f(x)exax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为1(1)求a的值及函数f(x)的极值;(2)证明:当x0时,x2ex解(1)由f(x)exax,得f(x)exa因为f(0)1a1,所以a2,所以f(x)ex2x,f(x)ex2,令f(x)0,得xln 2,当xln 2时,f(x)0,f(x)单调递减;当xln 2时,f(x)0,f(x)单调递增所以当xln 2时,f(x)取得极小值,且极小值为f(ln 2)eln 22ln 22ln 4,f(x)无极大值(2)
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。