极坐标与参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.二、知识结构1.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 常见的曲线的参数方程2.直线的参数方程(1)标准式 过点Po(x0,y0),倾斜角为的直线的参数方程是 (t为参数,其几何意义是PM的数量)(2)一般式 过定点P0(x0,y0)斜率k=tg=的直线的参数方程是(t为参数,) 3.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r的圆的参数方程