一、定义法例1 ( 如图1 )四面体ABCS中,SA,SB,SC 两两垂直,SBA=45, SBC=60, M 为 AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。图12、在三棱锥中,则与平面所成角的余弦值。3、(2016年浙江高考)如图,在三棱台ABC-DEF中,平面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3.(I)求证:BF平面ACFD;(II)求直线BD与平面ACFD所成角的余弦值.4、(2016年天津高考)如图,四边形ABCD是平行四边形,平面AED平面ABCD,EF|AB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G为BC的中点.()求证:FG|平面BED;()求证:平面BED平面AED;()求直线EF与平面BED所成角的正弦值.5、在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,ACB=900,AC=1,AA1=2,求BC1与平面A1BC所成角的正弦值。(定义法、等体积法、向量法)