生成直线的Bresenham算法从上面介绍的DDA算法可以看到,由于在循环中涉及实型数据的加减运算,因此直线的生成速度较慢。在生成直线的算法中,Bresenham算法是最有效的算法之一。Bresenham算法是一种基于误差判别式来生成直线的方法。一、直线Bresenham算法描述:它也是采用递推步进的办法,令每次最大变化方向的坐标步进一个象素,同时另一个方向的坐标依据误差判别式的符号来决定是否也要步进一个象素。我们首先讨论m=y/x,当0m1且x1x2时的Bresenham算法。从DDA直线算法可知这些条件成立时,公式(2-2)、(2-3)可写成:xi+1=xi+1(26)yi+1=yi+m(27)有两种Bresenham算法思想,它们各自从不同角度介绍了Bresenham算法思想,得出的误差判别式都是一样的。二、直线Bresenham算法思想之一:由于显示直线的象素点只能取整数值坐标,可以假设直线上第i个象素点坐标为(xi,yi),它是直线上点(xi,yi)的最佳近似,并且xi=xi(假设m